tìm x,y,z biết:
x+y+z=-2
1/x+1/y+1/z=-1/2
x^2+2y=-1
Cho x;y;z>0 và x+y+z<3 .Tìm Min= 1/(x^2+y^2+z^2) + 9/(xyz)
Cho x,y,z thuộc đoạn [0;1] và x+y+z=1 tìm GTLN của A=√(8x^2+1)+√(8z^2+1)+√(8y^2+1)
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
với x,y,z>0 CMR
(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2) >= (x+y+z)(1/x+1/y+1/z)
Cho\(\hept{\begin{cases}xyz=1\\x,y,z>0\end{cases}}\)Tìm Min A=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Cho x,y,z thoa man x^3+y^3+z^3=1 va x((1/y)+(1/z))+y((1/z)+(1/x))+z((1/x)+(1/y))=-2 Tinh 1/x + 1/y + 1/z
(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2) >= (x+y+z)(1/x+1/y+1/z)