VÌ \(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=z\\x=1\\y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}}\)
VÌ \(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}x=z\\x=1\\y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}}\)
tìm các số x,y,z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2010}=0\)
Tìm x biết: \(^{\left(3x-5\right)^{2008}}\)+ \(^{\left(y^2-1\right)^{2010}}\)+ \(^{\left(x-z\right)^{2012}}\)= 0
Có bao nhiêu bộ ba (x;y;z) thỏa mãn đẳng thức sau:
\(\left(x^2-25\right)^{2008}+\left(y^4-16\right)^{2010}+\left(x-z\right)^{2012}=0\)
Tìm x; y; z :
a) \(2009-\left|x-2009\right|=x\)
b) \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
Tìm x y z biết
\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
Tìm x,y,z biết:
a) \(\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2+y^2+z^2=116\)
c)\(||x-2|-3|=4\)
d) \(xy+2x-y=5\left(x,y,z\inℤ\right)\)
đ) \(|x-2|+|3-2x|=2x+1\)
e)
Tìm x,y,z biết :
\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
tìm các số x, y, z biết
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
Ai biết làm bài này ko ? Tìm x,y,z
\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)