1) Cho x,y,z khác 0 sao cho : \(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{x=2y=2z}{x}\)
Tính M = \(\frac{\left(x+y\right).\left(y+z\right).\left(z+x\right)}{8.x.y.z}\)
Cho x,y,z khác 0 sao cho \(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\).Tính \(\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
Tìm x y z
\(\frac{x}{2y+2z+1}\)=\(\frac{y}{2x+2z+1}\)=\(\frac{z}{2x+2y-2}\)=2(x+y+z)
Cho x, y, z > 0. Biết rằng \(\frac{x+2y-z}{z}=\frac{y+2z-x}{x}=\frac{z+2x-y}{y}\). Tính \(C=\left(2+\frac{x}{y}\right)\left(2+\frac{y}{z}\right)\left(2+\frac{z}{x}\right)\)
Cho x;y;z là các số hữu tỉ khác 0 , sao cho \(\frac{2x+2y-z}{z}=\frac{2x-y+2z}{y}=\frac{-x+2y+2z}{x}\)
Tính giá trị bằng số của biểu thức M =\(\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x,y,z và x + y + z khác 0 thỏa mãn \(\frac{x+2y}{x+2y-z}=\frac{y+2z}{y+2z-x}=\frac{z+2x}{z+2x-y}\)
Tính \(T=\frac{x^2+y^2}{xy}=\frac{y^2+z^2}{yz}=\frac{z^2+x^2}{zx}\)
Cho các số x;y;z thỏa mãn
\(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}.\)
Tính giá trị của biểu thức:
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)