Lời giải:
Nếu $x+y+z=0$
$\Rightarrow \frac{x}{z+y+5}=\frac{y}{x+z+5}=\frac{z}{x+y-10}=0$
$\Rightarrow x=y=z=0$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$x+y+z=\frac{x}{z+y+5}=\frac{y}{x+z+5}=\frac{z}{x+y-10}=\frac{x+y+z}{z+y+5+x+z+5+x+y-10}=\frac{x+y+z}{2(x+y+z)}=\frac{1}{2}$
$\Rightarrow \frac{z+y+5}{x}=\frac{x+z+5}{y}=\frac{x+y-10}{z}=2$
$\Rightarrow \frac{x+y+z+5}{x}=\frac{x+y+z+5}{y}=\frac{x+y+z-10}{z}=3$
$\Rightarrow \frac{5,5}{x}=\frac{5,5}{y}=\frac{-9,5}{z}=3$
$\Rightarrow x=\frac{11}{6}; y=y=\frac{11}{6}; z=\frac{-19}{6}$