\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)(ĐK : \(x\ge2;y\ge3;z\ge5\))
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Vì \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)nên phương trình tương đương với :
\(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)(TMĐK)
Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(3;7;14\right)\)
cho tam giac ABC vuong tai A , AH vuong goc BC , goi E,F lan luot la hinh chieu vuong goc cua H len AB va AC. Đat AB=x, BC=2a( a la hằng so k doi).
a) cm: AH.AH.AH=BC.BE.BF=BC.HE.HF
b) tinh dien h tam giac AEF theo a va x
tim x de dien h tam giac AEF đặt GTNN