Vì x,y,z tỉ lệ nghịch với 3,5,7 => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}=\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{68}{\frac{94}{105}}=\frac{3570}{47}\)
\(\frac{2x}{\frac{2}{3}}=\frac{3570}{47}\Rightarrow2x=\frac{2380}{47}\Rightarrow x=\frac{1190}{47}\)
\(\frac{y}{\frac{1}{5}}=\frac{3570}{47}\Rightarrow y=\frac{714}{47}\)
\(\frac{3z}{\frac{3}{7}}=\frac{3570}{47}\Rightarrow3z=\frac{1530}{47}\Rightarrow z=\frac{510}{47}\)
Vậy ....
TBRTC:\(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
Xong tính x,y,z