H24

tìm x,y,z biết :

x/2 = y/4 ; y/5 = z/6 và x + y + z = 486

DP
1 tháng 8 2017 lúc 8:37

\(\frac{x}{2}=\frac{y}{4}\Rightarrow\frac{x}{10}=\frac{y}{20}\) (*)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\)(**)

Từ (*) và (**) \(\Rightarrow\frac{x}{10}=\frac{y}{20}=\frac{z}{24}=k\)\(\Rightarrow x=10k\)\(y=20k\)\(z=24k\)

Ta có : \(x+y+z=486\Rightarrow10k+20k+24k=486\Rightarrow54k=486\Rightarrow k=\frac{486}{54}=9\)

Do đó : \(\frac{x}{10}=9\Rightarrow x=9.10=90\)

             \(\frac{y}{20}=9\Rightarrow y=9.20=180\)

           \(\frac{z}{24}=9\Rightarrow z=9.24=216\)

Vậy .....

Bình luận (0)
NN
1 tháng 8 2017 lúc 8:45

\(\frac{x}{2}\)\(\frac{y}{4}\)\(\frac{y}{5}\)\(\frac{z}{6}\) và x+y+z=486

\(\Rightarrow\)\(\frac{x}{10}\)\(\frac{y}{20}\)\(\frac{y}{20}\)\(\frac{z}{24}\)

\(\Rightarrow\)\(\frac{x}{10}\)\(\frac{y}{20}\)\(\frac{z}{24}\)và x+y+z=486

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}\)\(\frac{y}{20}\)\(\frac{z}{24}\)=\(\frac{x+y+Z}{10+20+24}\)\(\frac{486}{54}\)= 9

Suy ra:       \(\frac{x}{10}\)= 9\(\Rightarrow\)x= 9.10=90

                 \(\frac{y}{20}\)= 9\(\Rightarrow\)y= 20.9= 180

                  \(\frac{z}{24}\)= 9\(\Rightarrow\)z= 24.9= 216

Vậy x= 90; y=180; z= 216

Bình luận (0)