\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{-8+9+20}=\frac{42}{21}=2\)
=>x+1=6=>x=5
y+2=2.(-4)=-8=>y=-10
z-3=10=>x=13
vậy x=5;y=-10;z=13
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3.\left(x+1\right)+2.\left(y+2\right)+4.\left(z-3\right)}{3.3+2.\left(-4\right)+4.5}\)
\(=\frac{3x+3+2y+4+4z-12}{9-8+20}=\frac{\left(3x+2y+4z\right)+\left(3+4-12\right)}{21}\)
\(=\frac{47-5}{21}=2\)
suy ra: \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\frac{x+2}{-4}=2\Rightarrow x+2=-8\Rightarrow x=-6\)
\(\frac{z-3}{5}=2\Rightarrow z-3=10\Rightarrow z=13\)