Sử dụng tính chất của dãy tỉ số bằng nhau thì :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
Do \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
Suy ra \(\frac{x+y+z+2}{9}=\frac{x+y+z+2}{2x+5}< =>2x+5=9\)
\(< =>2x=4< =>x=\frac{4}{2}=2\)
Thế vào thì ta được : \(\hept{\begin{cases}\frac{x+1}{2}=\frac{y-1}{3}< =>\frac{3}{2}=\frac{y-1}{3}\\\frac{x+1}{2}=\frac{z+2}{4}< =>\frac{3}{2}=\frac{z+2}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}2\left(y-1\right)=9\\2\left(z+2\right)=12\end{cases}< =>\hept{\begin{cases}2y-2=9\\2z+4=12\end{cases}}}\)
\(< =>\hept{\begin{cases}2y=11< =>y=\frac{11}{2}\\2z=8< =>z=\frac{8}{2}=4\end{cases}}\)
Vậy ta có bộ số x,y,z thỏa mãn đẳng thức sau : \(\left\{2;\frac{11}{2};4\right\}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z}{2x+5}\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}=\frac{x+y+z}{9}\)(1)
Từ (1) => \(\frac{x+y+z}{2x+5}=\frac{x+y+z}{9}\)
=> 2x + 5 = 9
=> 2x = 4
=> x = 2
Thay x vào (1)
=> \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\)
=> \(\frac{y-1}{3}=\frac{z+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{3}{2}.3+1\\z=\frac{3}{2}.4-2\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)
Vậy x = 2 ; y = 11/2 ; z = 4
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
=> \(\frac{x+y+z+2}{2x+5}=\frac{x+y+z+2}{9}\)
Nếu x + y + z + 2 = 0 => \(\hept{\begin{cases}\frac{x+1}{2}=0\\\frac{y-1}{3}=0\\\frac{z+2}{4}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=1\\z=-2\end{cases}}\)
Nếu x + y + z + 2 khác 0 => \(\frac{1}{2x+5}=\frac{1}{9}\) <=> 2x + 5 = 9 <=> 2x = 4 <=> x = 2
Với x = 2 => \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\) => \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\)=> \(\hept{\begin{cases}y-1=\frac{9}{2}\\z+2=6\end{cases}}\)=> \(\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)
AD t/c dãy tỉ số bằng nhau
(x+1)/2 = (y-1)/3 = (z+2)/4 = (x+y+z+2)/(2x+5) = [(x+1)/2 + (y-1)/3 + (z+2)/4]/(2+3+4) = (x+y+z+2)/9
=> (x+y+z+2)/(2x+5) = (x+y+z+2)/9
=> 2x+5 = 9
=> 2x = 4
=> x = 2
Áp dụng tính chất của dãy số bằng nhau, ta có :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
Mà \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
\(\Rightarrow\frac{x+y+z+2}{9}=\frac{x+y+x+2}{2x+5}\)
\(\Leftrightarrow2x+5=9\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Ta có : \(\frac{x+1}{2}=\frac{y-1}{3}\Rightarrow\frac{3}{2}=\frac{y-1}{3}\Rightarrow2\left(y-1\right)=9\Leftrightarrow y=\frac{11}{2}\)
\(\frac{x+1}{2}=\frac{z+2}{4}\Rightarrow\frac{3}{2}=\frac{z+2}{4}\Rightarrow2\left(z+2\right)=12\Leftrightarrow z=4\)
Vậy \(x=2;y=\frac{11}{2};z=4\)