Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

DB

tìm x.y.z biết: (4z-10y)/3=(10x-3z)/4=(3y-4x)/10 và 2x+3y-z=40

XO
8 tháng 11 2019 lúc 20:25

Từ đẳng thức : \(\frac{4z-10y}{3}=\frac{10x-3z}{4}=\frac{3y-4x}{10}\)

\(\Rightarrow\frac{3\left(4z-10y\right)}{3^2}=\frac{4\left(10x-3z\right)}{4^2}=\frac{10\left(3y-4x\right)}{10^2}\)

\(\Rightarrow\frac{12z-30y}{3^2}=\frac{40x-12z}{4^2}=\frac{30y-40x}{10^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12z-30y}{3^2}=\frac{40x-12z}{4^2}=\frac{30y-40x}{10^2}=\frac{12z-30y+40x-12z+30y-40x}{3^2+4^2+10^2}=\frac{0}{125}=0\)

\(\Rightarrow\hept{\begin{cases}4z=10y\\10x=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{z}{10}=\frac{y}{4}\\\frac{z}{10}=\frac{x}{3}\end{cases}\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{10}\Rightarrow\frac{x}{3}=\frac{2x}{6}=\frac{y}{4}=\frac{3y}{12}=\frac{z}{10}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{10}=\frac{2x}{6}=\frac{3y}{12}=\frac{2x+3y-z}{12+6-10}=\frac{40}{8}=5\)

=> x = 3.5 = 15;

y = 4.5 = 20;

z = 10.5 = 50

Vậy x = 15 ;y = 20 ; z = 50 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
KN
Xem chi tiết
CD
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
HT
Xem chi tiết
NA
Xem chi tiết
HN
Xem chi tiết
VN
Xem chi tiết
QT
Xem chi tiết