NT

Tìm x,y,z biết 

2x=3y, 4z=5x và 3y2 - z2 = -33

PN
10 tháng 6 2020 lúc 21:35

Từ \(\hept{\begin{cases}2x=3y< =>\frac{x}{3}=\frac{y}{2}\\4z=5x< =>\frac{z}{5}=\frac{x}{4}\end{cases}< =>\frac{x}{12}}=\frac{y}{8}=\frac{z}{15}\)

Đặt \(\frac{x}{12}=\frac{y}{8}=\frac{z}{15}=k\)

\(< =>\hept{\begin{cases}\frac{x}{12}=k< =>x=12k\\\frac{y}{8}=k< =>y=8k\\\frac{z}{15}=k< =>z=15k\end{cases}}\)

Khi đó \(3y^2-z^2=-33\)

\(< =>z^2-3y^2=33\)

\(< =>\left(15k\right)^2-3\left(8k\right)^2=33\)

\(< =>225k^2-3.64k^2=33\)

\(< =>225k^2-192k^2=33\)

\(< =>33k^2=33\)

\(< =>k^2=1< =>\orbr{\begin{cases}k=1\left(1\right)\\k=-1\left(2\right)\end{cases}}\)

Với \(\left(1\right)< =>\hept{\begin{cases}x=12k=12\\y=8k=8\\z=15k=15\end{cases}}\)

Với \(\left(2\right)< =>\hept{\begin{cases}x=12k=-12\\y=8k=-8\\z=15k=-15\end{cases}}\)

Vậy ta có 2 bộ số \(\left\{x;y;z\right\}=\left\{-12;-8;-15\right\};\left\{12;8;15\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
CX
Xem chi tiết
TD
Xem chi tiết
BH
Xem chi tiết
ML
Xem chi tiết
MB
Xem chi tiết
NP
Xem chi tiết