\(\frac{a}{b}=\frac{-3}{4}\Rightarrow a=-3k;b=4k\Rightarrow a+5b=17k=34\Rightarrow k=2\Rightarrow a=-6;b=8\)
Quân đây nhé
a) \(\frac{3x-2}{x+1}=\frac{6x-4}{2x+2}=\frac{6x-10}{2x+8}=\frac{6x-4-6x+10}{2x+2-2x-8}=\frac{6}{-6}=-1\)
\(\Rightarrow\)\(3x-2=-x-1\)\(\Leftrightarrow\)\(x=\frac{1}{4}\)
b) \(\frac{x}{y}=\frac{-3}{y}\)\(\Leftrightarrow\)\(\frac{x}{-3}=\frac{y}{4}\)\(\Leftrightarrow\)\(\frac{x}{-3}=\frac{5y}{20}=\frac{x+5y}{-3+20}=\frac{34}{17}=2\)
\(\Rightarrow\)\(\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=2.4=8\end{cases}}\)
a. \(\frac{3x-2}{x+1}=\frac{6x-10}{2x+8}\)
<=> (3x - 2)(2x + 8) = (6x - 10)(x + 1)
<=> 6x2 - 4x + 24x - 16 = 6x2 - 10x + 6x - 10
<=> 6x2 + 20x - 16 = 6x2 - 4x - 10
<=> 24x = 6
<=> x = \(\frac{1}{4}\)
b. \(\frac{x}{y}=\frac{-3}{4}\) => \(\frac{x}{-3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-3}=\frac{y}{4}=\frac{x+5y}{-3+20}=\frac{34}{17}\)= 2
=> x = 2(-3) = -6
y = 2.4 = 8
Vậy ...