AS

Tìm x,y thuộc Z biết \(\left(x-3\right)^2+x^4=-y^2+6\cdot y-4\)

HN
11 tháng 7 2016 lúc 23:09

Ta có : \(\left(x-3\right)^2+x^4=-y^2+6y-4\Leftrightarrow\left(x-3\right)^2+x^4=-\left(y^2-6y+9\right)+5\)

\(\Leftrightarrow\left(x-3\right)^2+x^4+\left(y-3\right)^2=5\)(1)

Từ (1) ta suy ra được : \(x^4\le5\Rightarrow-1\le x\le1\)( Vì \(x\in Z\))

Nhận xét , nếu \(x\le0\Rightarrow\left(y-3\right)^2=5-\left[\left(x-3\right)^2+x^4\right]< 0\) (vô lí)

Vậy x = 1.  Suy ra \(\left(y-3\right)^2=0\Leftrightarrow y=3\)

Kết luận : Tập nghiệm của phương trình : (x;y) = (1;3)

Bình luận (0)
E2
12 tháng 7 2016 lúc 10:22

Ta chia thành 2 trường hợp : 
a)y^2+y=x^4+x^3+x^2+x=0 (1) 
...(1)<=>y(y+1)=x(x^3+x^2+x+1)=0 
...Pt này có 4 nghiệm sau 
...x1=0; y1=0 
...x2=0; y2= -1 
...x3= -1; y3=0 
...x4= -1; y4= -1 
b)y^2+y=x^4+x^3+x^2+x (# 0) (2) 
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì 
...(2)<=>y(y+1)=(x^2)(x^2+x+1+1/x) 
...Đến đây lại chia 2 th : 
...+{y=x^2 
.....{x+1+1/x=1 (3) 
.....(3) vô nghiệm =>th này vô nghiệm 
...+{y+1=x^2 
.....{x+1+1/x= -1 
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại) 
...Vậy khi y^2+y=x^4+x^3+x^2+x # 0 thì pt vô nghiệm 
Tóm lại pt đã cho có 4 nghiệm 
x1=0; y1=0 
x2=0; y2= -1 
x3= -1; y3=0 
x4= -1; y4= -1

Bình luận (0)

Các câu hỏi tương tự
TQ
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
KD
Xem chi tiết
PL
Xem chi tiết
LH
Xem chi tiết
Xem chi tiết
NH
Xem chi tiết
MH
Xem chi tiết