H24

tìm x,y thuộc Q, biết:

x.y= x-y= x.y (y khác 0) ( x và y đều có giá trị)

H24
26 tháng 8 2019 lúc 22:37

                                                    Bài giải

\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)

Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)

Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)   

\(x-y=x+1\)

\(y=x-\left(x+1\right)\)

\(y=x-x-1\)

\(y=0-1\)

\(y=-1\)

Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được : 

\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)

\(x=\left(x+1\right)\left(-1\right)\)

\(x=-x+\left(-1\right)\)

\(x+x=-1\)

\(2x=-1\)

\(x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2}\) , \(y=1\)

Bình luận (0)
H24
26 tháng 8 2019 lúc 22:40

                                                    Bài giải

\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)

Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)

Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)   

\(x-y=x+1\)

\(y=x-\left(x+1\right)\)

\(y=x-x-1\)

\(y=0-1\)

\(y=-1\)

Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được : 

\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)

\(x=\left(x+1\right)\left(-1\right)\)

\(x=-x+\left(-1\right)\)

\(x+x=-1\)

\(2x=-1\)

\(x=-\frac{1}{2}\)

Vậy \(x=-\frac{1}{2}\) , \(y=1\)

Bình luận (0)

Các câu hỏi tương tự
CU
Xem chi tiết
CU
Xem chi tiết
ND
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
CU
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết