\(3^{x+1}.5^y=45^x\)
\(3^x.3.5^y=45^x\)
\(3.5^y=45^x\div3^x\)
\(3.5^y=\left(45\div3\right)^x\)
\(3.5^y=15^x\)
\(3.5^y=3^x.5^x\)
\(3=3^x.\left(5^x\div5^y\right)\)
Để \(3^x.\left(5^x\div5^y\right)=3\left(1\right)\Rightarrow5^x\div5^y=1\Leftrightarrow x=y\)
Mà (1) => \(3^x=3\Rightarrow x=1\)
\(\Rightarrow x=y=1\)