LK

Tìm x,y thuộc N biết : 25-y2=8.(x-2009)2

hi k cho tui

Bình luận (0)
OI

Ta có: \(25-y^2=8\left(x-2009\right)^2\)

\(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\left(1\right)\)

\(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\left(2\right)\)

từ\(\left(1\right),\left(2\right)\Rightarrow y^2\in\left\{1;9;25\right\}\)

\(+,y^2=1\Rightarrow8\left(x-2009\right)^2=24\Rightarrow\left(x-2009\right)^2=3\left(ktm\right)\)

\(+,y^2=9\Rightarrow8\left(x-2009\right)^2=16\Rightarrow\left(x-2009\right)^2=2\left(ktm\right)\)

\(+,y^2=25\Rightarrow8\left(x-2009\right)^2=0\Rightarrow\left(x-2009\right)^2=0\Rightarrow x-2009=0\Rightarrow x=2009\)

Vậy\(x=2009;y=5\)hoặc\(-5\)

Bình luận (0)
H24
7 tháng 1 2019 lúc 20:58

Có \(8\cdot\left(x-2009\right)^2\ge0\forall x\)và \(8\left(x-2009\right)^2⋮8\)

Mà \(25-y^2=8\cdot\left(x-2009\right)^2\)

\(\Rightarrow\hept{\begin{cases}25-y^2\ge0\\25-y^2⋮8\end{cases}}\)

Mà \(25-y^2\le25\)

Nên: \(25-y^2\)thuộc { 0;8;16;24}

TH1: \(25-y^2=0\Rightarrow y=5\)( do y thuộc N )

\(\Rightarrow x=2009\)

TH2: \(25-y^2=8\Rightarrow y=\sqrt{17}\)

VÔ LÝ

TH3: \(25-y^2=16\Rightarrow y=3\)

\(\Rightarrow16=8\cdot\left(x-2009\right)^2\)

\(\Rightarrow2=\left(x-2009\right)^2\)

VÔ LÝ vì một số tự nhiên bình phương lên không thể bằng 2

TH4: \(25-y^2=24\Rightarrow y=1\)

\(\Rightarrow25-1=8\cdot\left(x-2009\right)^2=24\)

\(\Rightarrow\left(x-2009\right)^2=3\)

VÔ LÝ vì không có số tự nhiên nào bình phươn lên bằng 3.

VẬY \(\hept{\begin{cases}x=2009\\y=5\end{cases}}\)

Bình luận (0)

Các câu hỏi tương tự
HS
Xem chi tiết
H24
Xem chi tiết
TU
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết
LA
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết