Tìm x, y nguyên dương thỏa mãn:
\(\sqrt[3]{9+\sqrt{x+1}}+\sqrt[3]{9-\sqrt{x-1}}=y\)
Tìm x,y biết: y=\(\sqrt[3]{9+\sqrt{x-1}}+\sqrt[3]{9-\sqrt{x-1}}\)
x,y nguyên dương.
Cho x;y;z là các số dương thỏa mãn \(x^2+y^2+z^2=12\)cmr
\(\dfrac{1}{\sqrt{x^3+1}}+\dfrac{1}{\sqrt{y^3+1}}+\dfrac{1}{\sqrt{z^3+1}}\ge1\)
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Voi x, y nguyên dương thỏa mãn \(\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\)
Và \(\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\)
thì x+y=....
( Chỉ ra lời giải nhé! )
Cho x;y;z là các số dương thỏa mãn \(x^2+y^2+z^2=12\)cmr
\(\frac{1}{\sqrt{x^3+1}}+\frac{1}{\sqrt{y^3+1}}+\frac{1}{\sqrt{z^3+1}}\ge1\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
Tìm các cặp số nguyên ( x;y) thỏa mãn 1 + \(\sqrt{x+y+3}\)= \(\sqrt{x}+\sqrt{y}\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)