LD

Tìm x,y nguyên dương biết\(\frac{1}{x}+\frac{1}{y}=\frac{1}{xy}=1\)

H24
20 tháng 1 2022 lúc 10:41

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}=1\)=>\(\dfrac{x+y+1}{xy}=1\)=>x+y+1=xy =>x-xy=-1-y =>x(1-y)=-1-y

=>x=\(\dfrac{-1-y}{1-y}\) mà x nguyên dương nên -1-y ⋮ 1-y

=>(1-y)-2 ⋮ 1-y

=>2 ⋮ 1-y

=>1-y ∈{1;-1;2;-2}

=>y∈{0;2;-1;3}. Vì y nguyên dương và y khác 0 nên y∈{2;3}

* Nếu y=2 thì phương trình x+y+1=xy trở thành:

x+3=2x =>x=3

* Nếu y=3 thì phương trình x+y+1=xy trở thành:

x+4=3x =>x=2

- Vậy y=2 thì x=3 ; y=3 thì x=2.

Bình luận (0)
H24
20 tháng 1 2022 lúc 9:41

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{xy}\)=>\(\dfrac{x+y}{xy}=\dfrac{1}{xy}\)=>x+y=1

\(\dfrac{1}{xy}=1\)=>xy=1

- Ta có: x, y nguyên dương mà xy=1 =>x=y=1 mà x+y=1 (vô lý)

Vậy x,y∈∅

 

Bình luận (5)

Các câu hỏi tương tự
PS
Xem chi tiết
TM
Xem chi tiết
LN
Xem chi tiết
VV
Xem chi tiết
VT
Xem chi tiết
ZT
Xem chi tiết
NY
Xem chi tiết
TT
Xem chi tiết
SC
Xem chi tiết