ND

Tìm x,y nguyên biết:

2x^2+2xy-3x-y=5

Help me pls!

NH
24 tháng 12 2022 lúc 16:31

Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .

                         2x2 + 2xy - 3x - y = 5

                ( 2x2 + 2xy ) - x - y - 2x + 1 = 6

                 2x( x + y) - ( x + y)  - (2x  -1) = 6

                     ( x+y) ( 2x - 1) - ( 2x -1) = 6

                       (2x -1) ( x + y - 1) = 6

                      vì 6 = 2.3 =>  Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}

        Nên  với x, y  \(\in\) Z thì  ( 2x-1)(x+y -1) = 6  khi và chỉ khi :

                       th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)

                      th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)

                     th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)

                     th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)

                     th5 :  \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

                     th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

                    th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)

                     th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)

    Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:

      (x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)

 

 

 

Bình luận (1)