\(xy=2x+y\Rightarrow xy-2x-y=0\)
\(\Rightarrow xy-2x-y+2=2\)
\(\Rightarrow x\left(y-2\right)-\left(y-2\right)=2\Rightarrow\left(x-1\right)\left(y-2\right)=2\)
Ta xét ước của 2
\(Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
TH1 \(\hept{\begin{cases}x-1=1\\y-2=2\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)
TH2 \(\hept{\begin{cases}x-1=2\\y-2=1\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)
TH3 \(\hept{\begin{cases}x-1=-2\\y-2=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
TH4 \(\hept{\begin{cases}x-1=-1\\y-2=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy...