Ta có: \(\frac{x^2+y^2}{10}=\frac{2x^2+2y^2}{20}=\frac{x^2-2y^2}{7}=\frac{\left(2x^2+2y^2\right)-\left(x^2-2y^2\right)}{20+7}=\frac{3x^2}{27}\)(theo t/c của dãy TSBN)
=>\(\frac{x^2+y^2}{10}=\frac{3x^2+3y^2}{30}=\frac{3x^2}{27}=\frac{\left(3x^2+3y^2\right)-3x^2}{30-27}=\frac{3y^2}{3}\) (theo t/c của dãy TSBN)
=>\(\frac{3x^2}{27}=\frac{3y^2}{3}\)
=>\(\frac{x^2}{3^2}=y^2\)
=>\(\left(\frac{x}{3}\right)^2=y^2\)
=>\(\frac{x}{3}=y\) hoặc \(\frac{x}{3}=-y\)
=>x=3y hoặc x=-3y
Ta có: x4y4=81
=>(xy)4=34=(-3)4
=>xy=3 hoặc xy=-3
TH1: xy=3
Thay x=3y và x=-3y lần lượt vào ta được x=3 và y=1
TH2:xy=-3
Thay x=3y và x=-3y lần lượt vào ta được x=3; y=-1 hoặc x=-3; y=1
Vậy (x;y)\(\in\){(3;1);(-3;1);(3;-1)}
kaitovskudo Cô bé lo lem làm chi tiết dùm mk