|x+23|^2002|+|y-12|^123=0
<=>|x+23|^2002\(\ge\) 0
\(\left|y-12\right|^{^{123}}\ge0\)
=>\(\left|x+23\right|^{2002}+\left|y-12\right|^{123}\ge0\)
=>x+23=0=>x=-23
=>y-12=0=>y=12
\(\left|x+23\right|^{2002}+\left|y-12\right|^{123}=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+23\right|^{2002}=0\\\left|y-12\right|^{123}=0\end{cases}}\Rightarrow\hept{\begin{cases}x+23=0\\y-12=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-23\\y=12\end{cases}}\)
Vậy \(x=-23;y=12\)
Vì \(\left|x+23\right|^{2002}\ge0;\left|y-12\right|^{123}\ge0\forall x;y\)
\(\Rightarrow\left|x+23\right|^{2002}+\left|y-12\right|^{123}\ge0\forall x;y\)
Mà đề lại cho \(\left|x+23\right|^{2002}+\left|y-12\right|^{123}=0\)
\(\Leftrightarrow\left|x+23\right|^{2002}=0;\left|y-12\right|^{123}=0\)
\(\Rightarrow x=-23;y=12\)
vài thành tự ra câu hỏi rồi trả lời bái phục