\(\left|x+1\right|+\left|x+2\right|+...+\left|x+12\right|=11x\)
Do \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;.....;\left|x+12\right|\ge0\)
\(\Rightarrow11x\ge0\Leftrightarrow x\ge0\)
Khi đó \(x+1>0;x+2>0;...;x+12>0\). Vậy phương trình trở thành:
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+12\right)=11x\)
\(12x+\left(1+2+3+...+12\right)=11x\)
\(12x+\frac{\left[\left(12-1\right):1+1\right].\left(12+1\right)}{2}=11x\)
\(12x+78=11x\)
\(11x-12x=78\)
\(-x=78\)
\(\Rightarrow x=-78\left(l\right)\)
Vậy phương trình vô nghiệm.