LD

Tìm x

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

H24
13 tháng 8 2019 lúc 15:50

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)

\(\Leftrightarrow20\left(x+2\right)=41\)

\(\Leftrightarrow x-2=\frac{41}{20}\)

\(\Leftrightarrow x=\frac{41}{20}+2\)

\(\Leftrightarrow x=\frac{81}{20}\)

Bình luận (0)
H24
13 tháng 8 2019 lúc 15:52

\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\) 

\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)

Bình luận (0)
XO
13 tháng 8 2019 lúc 15:52

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\)

\(\Rightarrow x+2=41\)

\(\Rightarrow x=41-2\)

\(\Rightarrow x=39\)

Vậy x = 39

Bình luận (0)
H24
13 tháng 8 2019 lúc 15:53

Éc :v sai nặng :))

Bình luận (0)

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Leftrightarrow\frac{x+1}{x+2}=\frac{20}{41}\cdot2\)

\(\Leftrightarrow\frac{x+1}{x+2}=\frac{40}{41}\Rightarrow x=39\)

Bình luận (0)
HS
13 tháng 8 2019 lúc 15:57

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x(x+2)}=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{x(x+2)}\right]=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right]=\frac{20}{41}\)

\(\Leftrightarrow\frac{1}{2}\left[1-\frac{1}{x+2}\right]=\frac{20}{41}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\cdot2=\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)

\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\Leftrightarrow x+2=41\Leftrightarrow x=39\)

Vậy x = 39

Bình luận (0)

Các câu hỏi tương tự
PQ
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
TT
Xem chi tiết
DN
Xem chi tiết
LA
Xem chi tiết
RC
Xem chi tiết
LD
Xem chi tiết
TV
Xem chi tiết