\(\frac{x-1}{2014}+\frac{x-2}{2013}-\frac{x-3}{2012}=\frac{x-4}{2011}\)
\(\frac{x-1}{2014}+\frac{x-2}{2013}-\frac{x-3}{2012}-\frac{x-4}{2011}=0\)
\(\left(\frac{x-1}{2014}-1\right)+\left(\frac{x-2}{2013}-1\right)-\left(\frac{x-3}{2012}-1\right)-\left(\frac{x-4}{2011}-1\right)=0\)
\(\frac{x-2015}{2014}+\frac{x-2015}{2013}-\frac{x-2015}{2012}-\frac{x-2015}{2011}=0\)
\(\left(x-2015\right).\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\right)=0\)
Vì \(\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\ne0\)
\(\Rightarrow x-2015=0\)
\(x=0+2015\)
\(x=2015\)