gvjcdxrft564y7v dxzcf564zv nbcy564zv c65478erzcv 5647 zc645 ycv6f7dsfy7t4zcv3o6cv6hjyjunynuyyuhu
Áp dụng t.c dãy ts bằng nhau
\(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{x}\)
Vậy \(x=\frac{1}{2}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\left(a+b+c\ne0\right)\)
vì \(x=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\left(a,b,c\ne0\right)\)
=> \(x=\frac{1}{2}\)
p/s: nếu ko làm cách lật ngược lại còn có 1 trường hợp = 0 nx nhưng nó sẽ KTM =)), mà cách này a+b+c ở mẫu nên ko cần xét