a) \(\frac{8}{9}\cdot x-\frac{2}{3}=\frac{1}{3}\cdot x+1\frac{1}{3}\)
=> \(\frac{8x}{9}-\frac{2}{3}=\frac{x}{3}+\frac{4}{3}\)
=> \(\frac{8x}{9}-\frac{6}{9}=\frac{x+4}{3}\)
=> \(\frac{8x-6}{9}=\frac{x+4}{3}\)
=> \(3\left(8x-6\right)=9\left(x+4\right)\)
=> \(24x-18=9x+36\)
=> \(24x-18-9x=36\)
=> \(24x-9x=54\)
=> \(15x=54\)
=> \(5x=18\)
=> \(x=\frac{18}{5}\)
Vậy x = \(\frac{18}{5}\)
b) \(\left(x-\frac{1}{2}\right)\left(\frac{3}{2}-2x\right)=0\)
=> \(\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{2}-2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=\frac{3}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}:2=\frac{3}{4}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{2};\frac{3}{4}\right\}\)