+) \(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)
\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)
\(\Leftrightarrow-11x+22=0\)
\(\Leftrightarrow-11\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
+) \(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+4x+9x+6+\left(2-6x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)
\(\Leftrightarrow12x+7=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
2x( x - 4 ) - x( 2x + 3 ) + 22 = 0
<=> 2x2 - 8x - 2x2 - 3x + 22 = 0
<=> -11x + 22 = 0
<=> -11x = -22
<=> x = 2
( 2x + 3 )( 3x + 2 ) + 2( 1 - 3x )( x + 1/2 ) = 1
<=> 6x2 + 13x + 6 + 2( -3x2 - 1/2x + 1/2 ) = 1
<=> 6x2 + 13x + 6 - 6x2 - x + 1 = 1
<=> 12x + 7 = 1
<=> 12x = -6
<=> x = -6/12 = -1/2
\(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)
\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)
\(\Leftrightarrow-11x+22=0\Leftrightarrow x=2\)
\(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)
\(\Leftrightarrow12x+7=1\Leftrightarrow x=-\frac{1}{2}\)