Bài 1 : Cho x,y,z đôi một khác nhau và x+y+z=0.
Tính giá trị của biểu thức \(A=\frac{x^2y+2xz^2-xy^2-2yz^2}{2xy^2+2yz^2+2zx^2+3xyz}\)
bài 2 : Tìm các số nguyên dương x,y,z thỏa mãn \(xz=y^2\)và \(x^2+z^2+99=7y^2\)
BÀi 3 : Tìm các số tự nhiên x,y thõa mãn \(x^2-5x+7=3^y\)
tìm GTNN của x+y+z/xy+yz+xz biết (x-y)2=1/3, (y-z)2=1/4,(z-x)2=1/5 (0<x,y,z<1)
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cm biết x y z >0
Tìm x, y biết: x^2 + y^2 + z^2 = xy + yz + xz
Tìm x,y,z biết:
\(x^2+y^2+z^2=xy+yz+xz\)và \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)
tìm x,y,z biết x2+y2+z2=xy+yz+xz và x2011+y2011+z2011=32012
Tìm x biết:
a) x+y+z=9; 1/x+1/y+1/z=1; xy+yz+xz=27
b) 2x2=y×(x2+1); 2y2=z×(y2+1); 2z2=x×(z2+1)
Phân tích đa thức thành nhân tử
1) 35-(5-x)^2
2) 1/4-3xy+9y^2
3) 9x+9y+x^2-xy
4) x^2 - xy -7x +7y
5) 25-x^2 -y^2+2xy
6) 8x^3+1
7) (2x-3)^2-(3x+2)^2
8) 9(x+5)^2 - (x+7)^2
9) x^6-y^6
10) xy(x+y) +yz(y+z)=xz(x+z)+2xy^2
11) x^3+y^3+z^2-3xyz
12) (x+y+z)(xy+yz=xz) -xy^2
mau cứu mình với
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)