GF

Tìm x y z biết

\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

TT
28 tháng 3 2018 lúc 20:48

(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0

=> ( 2x - 1) 2008 =0                     => 2x - 1 =0                => 2x = 1                       => x = 1/2 

     ( y - 2/5 )2008 = 0                        y - 2/5 = 0                   y =2/5                           y = 2/5

     |x + y -z | = 0                             x + y - z = 0                x + 2/5 - z = 0                1/2 - 2/5  -z = 0 

=>x = 1/2              =>x = 1/2

    y = 2/5                  y = 2/5

    5/10 - 4/10 = z       z = 1/ 10

                                                                 Vậy x = 1/2 ; y = 2/5 : z = 1/10

( nhớ cho mk nha )

Bình luận (0)
IY
28 tháng 3 2018 lúc 20:58

ta có: \(\left(2x-1\right)^{2008}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)

\(\left|x+y-z\right|\ge0\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)

để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)

\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

KL: x= 1/2; y= 2/5; z=9/10

( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)

Bình luận (0)
ND
28 tháng 3 2018 lúc 21:00

Do (2x-1)2008\(\ge0\),\(\left(y-\frac{2}{5}\right)^{2008}\ge0\),|x+y-z|\(\ge0\)

mà đề cho tổng 3 số trên bằng 0

\(\Rightarrow\hept{\begin{cases}\left(2x-1\right)^{2008}\\\left(y-\frac{2}{5}\right)^{2008}\\\left|x+y-z\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x=-1\\y=\frac{2}{5}\\x+y-z=0\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

Vậy ...(bn tự kl nhé)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
H24
Xem chi tiết
VM
Xem chi tiết
MN
Xem chi tiết
LH
Xem chi tiết
MT
Xem chi tiết
Xem chi tiết
PT
Xem chi tiết
TD
Xem chi tiết