Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
=> \(\hept{\begin{cases}x=6.20=120\\y=6.24=144\\z=6.21=126\end{cases}}\)
Ta có :
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\) (1)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\) (2)
Từ (1) và (2) => \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=6\\\frac{y}{24}=6\\\frac{z}{21}=6\end{cases}}\Rightarrow\hept{\begin{cases}x=120\\y=144\\z=126\end{cases}}\)
\(\frac{x}{5}=\frac{y}{6}\)=> \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{x}{7}\) => \(\frac{y}{24}=\frac{z}{21}\)
suy ra: x/20 = y/24 = z/21
Áp dụng TCDTSBN