Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
Làm tính chia:
a) [ 12 ( y - z ) 4 - 3 ( z - y ) 5 ] : 6 ( y - z ) 2 ;
b) [ 2 ( x - 2 y + z ) 3 + 4 ( 2 y - x - z ) 2 ] : (2z - 4y + 2x).
Tìm x,y,z,t biết:
x2+y=2x; y2+z=2y; z2+t=2z; t2+x=2t
cho x,y,z là 3 cạnh của 1 tam giác , CMR :
2x^2y^2+2^2z^2+2z^2x^2-x^4-y^4-z^4>0
Cho x^2 +y^2+z^2 =1 va x,y,z > 0 Chứng minh x^3/(y+2z)+y^3/(z+2x)+z^3/(x+2y)>=1/3
CMR: Nếu (x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x)^2 + (z+x-2y)^2 + (x+y -2z)^2 thì x=y=z
Tìm x,y,z biết :
a, \(\frac{x}{3}=\frac{y-5}{7}=\frac{z+2}{3}\) và x+2y=52
b, \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và x+z=2y