NT

Tìm x, y, z biết:  \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}vàx^2+y^2+z^2=14\)

DV
19 tháng 10 2015 lúc 22:18

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Leftrightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{3}\)

Đến đây tự làm được rồi nhé !    

Bình luận (0)
TD
19 tháng 10 2015 lúc 22:27

=>\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)=>\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)=>\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Ap dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14}{56}=\frac{1}{4}\)(Vì x2+y2+z2=14)

=>\(\frac{x^2}{2^2}=\frac{1}{4}=>x^2=1=>x^2=1;x=-1\)

=>\(\frac{y^2}{4^2}=\frac{1}{4}=>y^2=4=>y=2;y=-2\)

=>\(\frac{z^2}{6^2}=\frac{1}{4}=>z^2=9=.z=3;z=-3\)

Vậy x=1 ; y=2 ; z=3  hoặc x=-1 ; y=-2 ; z=-3

 

Bình luận (0)

Các câu hỏi tương tự
OO
Xem chi tiết
PT
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
GT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết