\(x-y+2xy=3\)
\(\Leftrightarrow x+2xy-y=3\)
\(\Leftrightarrow x\left(1+2y\right)-\frac{1}{2}\left(1+2y\right)+\frac{1}{2}=3\)
\(\Leftrightarrow\left(1+2y\right)\left(x-\frac{1}{2}\right)=3-\frac{1}{2}\)
\(\Leftrightarrow\left(1+2y\right)\left(x-\frac{1}{2}\right)=\frac{5}{2}\)
\(\Leftrightarrow2.\left(1+2y\right)\left(x-\frac{1}{2}\right)=\frac{5}{2}.2\) (Nhân mỗi vế với 2)
\(\Rightarrow\left(1+2y\right)\left(2x-1\right)=5\)
\(\Rightarrow1+2y\)và \(2x-1\)\(\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Ta có bảng giá trị sau:
\(1+2y\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y\) | \(0\) | \(2\) | \(-1\) | \(-3\) |
\(2x-1\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(3\) | \(1\) | \(-2\) | \(0\) |
Vậy \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;2\right);\left(-2;-1\right);\left(0;-3\right)\right\}\)