CT

tìm x y thuộc n biết 36-y^2=8(x-2010)^2

ST
1 tháng 8 2018 lúc 9:58

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)

Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Mà (x-2010)2 là số chính phương => (x-2010)2=4 hoặc (x-2010)2=1 hoặc (x-2010)2=0

- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)

=>y2 = 4 => y = 2 (y thuộc N)

- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\left(loại\right)\)

- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

=>y2=36 => y=6 (y thuộc N)

Vậy các cặp (x;y) là (2012;2);(2018;2);(2010;6)

Bình luận (0)
H24
31 tháng 8 2018 lúc 10:13

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)

Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Mà \(\left(x-2010\right)^2\)là số chính phương \(\Rightarrow\left(x-2010\right)^2=4\)hoặc \(\left(x-2010\right)^2=1\)hoặc \(\left(x-2010\right)^2=0\)

- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)

\(\Rightarrow y^2=4\Rightarrow y=2\left(y\inℕ^∗\right)\)

- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\)(loại)

- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

\(\Rightarrow y^2=36\Rightarrow y=6\left(y\inℕ^∗\right)\)

Vậy các cặp \(\left(x;y\right)\)lần lượt là \(\left(2012;2\right);\left(2018;2\right);\left(2010;6\right)\)

Bình luận (0)
H24
22 tháng 3 2023 lúc 20:07

\(\dfrac{2222222222222222222222222222222}{2111111111111111111111111111111111111111111111111111111}\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
NH
Xem chi tiết
PS
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
VP
Xem chi tiết
ND
Xem chi tiết