\(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)
Vì \(\left|2x-2011\right|\ge0,\left(3y+2012\right)^{2012}\ge0\)
\(\Rightarrow\left|2x-2011\right|+\left(3y+2012\right)^{2012}\ge0\)
Mà \(\left|2x-2011\right|+\left(3y+2012\right)^{2012}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2011=0\\3y+2012=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{2011}{2}\\y=-\dfrac{2012}{3}\end{matrix}\right.\)