NN

tìm x, y bt

\(\frac{y^2-x^2}{3}\)  = \(\frac{x^2+y^2}{5}\)       và x10 . y10 = 1024

TN
17 tháng 10 2017 lúc 17:36

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}=\frac{y^2-x^2+x^2+y^2}{3+5}=\frac{y^2-x^2-x^2-y^2}{3-5}\)

\(\Rightarrow\frac{2y^2}{8}=\frac{-2.x^2}{-2}\Rightarrow\frac{y^2}{4}=x^2\Rightarrow y^2=4x^2\)

\(x^{10}.y^{10}=1024\)

\(\Rightarrow x^{10}.\left(y^2\right)^5=1024\)

\(\Rightarrow x^{10}.\left(4x^2\right)^5=1024\)

\(\Rightarrow x^{10}.4^5.x^{10}=1024\)

\(\Rightarrow x^{20}=\frac{1024}{4^5}=\frac{1024}{1024}=1\)

\(\Rightarrow x=1\) hoặc x = -1

=> y^2 = 4.1^2 hoặc y^2 = 4.(-1)^2

=> y^2 = 4 hoặc y^2 = 4

=> y=2 hay y =-2   hoặc y = -2hay y=2

Vậy (x;y) bằng (1;-2) hoặc (1;2) hoặc (-1;2) hoặc (-1;-2)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
PC
Xem chi tiết
NY
Xem chi tiết
DA
Xem chi tiết