Ta có :
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left[x^2-2.x.2+2^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(x=2\) và \(y=\frac{1}{2}\)
Chúc bạn học tốt ~
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy
\(x^2+4y^2-4x-4y+5=0\)( 1 )
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(2y-1\right)^2=0\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(1\right)\ge0\forall x;y\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy ...