\(\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
\(\Rightarrow\frac{x-1}{2004}-1+\frac{x-2}{2003}-1=\frac{x-3}{2002}-1+\frac{x-4}{2001}-1\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}=\frac{x-2005}{2002}+\frac{x-2005}{2001}\)
\(\Rightarrow\frac{x-2005}{2001}+\frac{x-2005}{2002}-\frac{x-2005}{2003}-\frac{x-2005}{2004}=0\)
\(\Rightarrow\left(x-2005\right).\left(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
Vì \(\frac{1}{2001}>\frac{1}{2003};\frac{1}{2002}>\frac{1}{2004}\)
\(\Rightarrow\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\)
\(\Rightarrow x-2005=0\)
\(\Rightarrow x=2005\)