Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
Tính A+B+C biết A=\(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^4}-\frac{1}{y^4}\right)\) , B=\(\frac{2}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)\) ,C=\(\frac{1}{\left(x+y\right)^5}.\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
\(\frac{1}{\left(x+y\right)^2}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^{\text{4}}}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giúp vs cần gấp
CMR: \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}.\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
\(Cho:A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)\)
\(B=\frac{2}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right)\)
\(C=\frac{2}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
Thực hiện phép tính : \(A+B+C\)
cho 2 so duong x,y va x+y=1. Tim GTNN cua
M=\(\left(\frac{x-1}{x}\right)^2+\left(\frac{y-1}{y}\right)^2\)
Cho \(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right);B=\frac{1}{\left(x+y\right)^4}\left(\frac{1}{x^3}-\frac{1}{y^3}\right);C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)\)
a) Rút gọn tổng A+B+C
b) Tính tổng A+B+C tại x=2016;y=2017
Rút gọn:
\(\frac{1}{\left(x+y\right)^3}\cdot\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\cdot\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\cdot\left(\frac{1}{x}+\frac{1}{y}\right)\)
Bài sau đây làm tôi không còn dám coi thường BĐT lớp 8:
Cho x, y là các số thực thỏa mãn: \(x\ge2,x+y\ge3\). Tìm Min:
\(A=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
Nghĩ mãi mới ra cách AM-GM (hơn 10 phút, mấy lần đầu nhóm sai!), rồi viết lại thành SOS nên 15 phút mới xong..
\(A-\frac{35}{6}=\left(x-2\right)^2\left(1+\frac{1}{4x}\right)+\left(y-1\right)^2+\frac{\left(x+y-3\right)^2}{9\left(x+y\right)}+\left[\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-\frac{55}{6}\right]\)
Cách AM-GM:
\(A=\left(x-2\right)^2+\left(y-1\right)^2+\frac{1}{x}+\frac{1}{x+y}+4x+2y-5\)
\(\ge\left(\frac{1}{x}+\frac{1}{4}x\right)+\left(\frac{1}{x+y}+\frac{15}{4}x+2y-5\right)\)
\(\ge1+\left[\frac{1}{9}\left(x+y\right)+\frac{1}{x+y}\right]+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-5\ge\frac{35}{6}\)
Đẳng thức xảy ra khi \(x=2;y=1\)