NA

-Tìm x và y 

  \(\frac{4^x}{2^{x+y}}=8\) và \(\frac{^{9^{x+y}}}{3^{5y}}=243\)

H24
31 tháng 1 2018 lúc 21:39

\(\frac{4^x}{2^{x+y}}=8\)

\(\frac{2^{2x}}{2^x.2^y}=8\)

\(\frac{2^x}{2^y}=8\)

\(2^x=2^3.2^y\)

\(2^x=2^{3+y}\)

\(\Rightarrow x=3+y\)

\(\frac{9^{x+y}}{3^{5y}}=243\)

\(\frac{3^{2x+2y}}{3^{5y}}=3^5\)

\(\frac{3^{2x}.3^{2y}}{3^{5y}}=3^5\)

\(\frac{3^{2x}}{3^{3y}}=3^5\)

\(3^{2x}=3^5.3^{3y}\)

\(3^{2x}=3^{5+3y}\)

\(\Rightarrow2x=3y+5\)

\(\hept{\begin{cases}2x-3y=5\\x=3+y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(3+y\right)-3y=5\\x=3+y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6+2y-3y=5\\x=3+y\end{cases}}\Leftrightarrow\hept{\begin{cases}-y=-1\\x=3+y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=1\\x=4\end{cases}}\)

vậy...

Bình luận (0)
DT
31 tháng 1 2018 lúc 21:35

\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow2^{2x}=2^{x+y+3}\Leftrightarrow x=y+3\)

\(9^{x+y}=243.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\Leftrightarrow2x=3y+5\)

\(\left(x,y\right)=\left(-1;2\right)\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
LD
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
TN
Xem chi tiết
TV
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết