......................?
mik ko biết
mong bn thông cảm
nha ................
a) x2+2y2+2xy-2y+1=0
\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0
\(\Leftrightarrow\)(x+y)2+(y-1)2=0
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x=-1, y=1
a/ \(x^2+2y^2+2xy-2y+1=0\)
<=> \(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
<=> \(\left(x+y\right)^2+\left(y-1\right)^2=0\)
<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
b/ \(x^2+2y^2+2xy-2x+2=0\)
<=> \(\left(x^2+2xy+y^2\right)+\left(2y-2x+2\right)=0\)
<=> \(\left(x+y\right)^2+2\left(y-x+1\right)=0\)
<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-x+1\right)=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\\y-x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\\y-x=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x+y=0\left(1\right)\\x-y=1\left(2\right)\end{cases}}\)
Trừ (1) và (2)
=> \(2y=-1\)
<=> \(y=-\frac{1}{2}\)
<=> \(x=\frac{1}{2}\)(vì \(x+y=0\)<=> \(x=-y\))
\(x^2+2y^2+2xy-2y+1=0.\)
\(\Rightarrow x^2+y^2+y^2+2xy-2y+1=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
Từ đó suy ra 2 trường hợp :
+ \(y-1=0\) + \(x+y=0\)
\(\Rightarrow y=1\) \(\Rightarrow x=-y\)
\(\Rightarrow x=\left(-1\right)\)