Cho
P=\(\left(\frac{2}{\left(x+1\right)^3}\times\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}\times\left(\frac{1}{x^2}+1\right)\right)\div\frac{x-1}{x^3}\)
a) Rút gọn P
b)Tìm x để P<1
c)Tìm x thuộc Z để P thuộc Z
\(A=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
Tìm x thuộc Z để A thuộc Z
Cho C=\(\frac{3\left|x\right|+2}{4\left|x\right|-5}\left(x\in Z\right)\)
a, Tìm x thuộc Z để C đạt Min, Max
b, Tìm x thuộc Z để C thuộc N
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
A = \(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a, Rút gọn A
b, Tìm x để A < 1
c, Tìm x để A = \(\left(x-1\right)^3:x^2\)
d, Tìm x thuộc Z để A thuộc Z
A ) \(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a, RÚT GỌN Q
b, TÌM x THUỘC TẬP HỢP Z ĐỂ Q THUỘC TẬP HỢP Z
Cho các số thực x, y, z thỏa mãn \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ne0\)và x+y+z = 1. Chứng minh giá trị của biểu thức sau không phụ thuộc vào x, y, z
\(T=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\left(\frac{x^2-2x}{x^3-x^2+x}\right)\))
a) Rút gọn
b) Tính giá trị A biết\(|x-\frac{3}{4}|=\frac{5}{4}\)
c) Tìm x thuộc Z để A thuộc Z
Bài 1) Rút gọn biểu thức
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
Bài 2) Chứng minh giá trị của biểu thức không phụ thuộc vào biến
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right).\left(\frac{x^2+5x}{5}\right)\)