Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HH

Tìm x thuộc Z để biểu thức \(A=\frac{2017x+1}{2018x-2018}\)đạt giá trị lớn nhất

PQ
18 tháng 3 2018 lúc 13:28

Ta có : 

\(A=\frac{2017x+1}{2018x-2018}=\frac{2017x-2017+2018}{2018x-2018}=\frac{2017\left(x-1\right)}{2018\left(x-1\right)}+\frac{2018}{2018\left(x-1\right)}=\frac{2017}{2018}+\frac{1}{x-1}\)

Để đạt GTLN thì \(\frac{1}{x-1}\) phải đạt GTLN hay nói cách khác \(x-1>0\) và đạt GTNN 

\(\Rightarrow\)\(x-1=1\)

\(\Rightarrow\)\(x=2\)

Suy ra : \(A=\frac{2017x+1}{2018x-2018}=\frac{2017.2+1}{2018\left(2-1\right)}=\frac{4034+1}{2018.1}=\frac{4035}{2018}\)

Vậy \(A_{max}=\frac{4035}{2018}\) khi \(x=2\)

Chúc bạn học tốt ~ 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NV
Xem chi tiết
TH
Xem chi tiết
MN
Xem chi tiết
VT
Xem chi tiết
PJ
Xem chi tiết
HK
Xem chi tiết
LG
Xem chi tiết
LL
Xem chi tiết