Ta có:\(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
\(\Rightarrow x-2\inƯ\left(5\right)\)
Ư(5) là:[1,-1,5,-5]
Do đó ta được bảng sau:
x-2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
\(A=\frac{x+3}{x-2}=\frac{\left(x-2\right)+5}{x-2}=1+\frac{5}{x-2}\)
Để \(1+\frac{5}{x-2}\) là số nguyên <=> \(\frac{5}{x-2}\) là số nguyên
=> x - 2 thuộc Ư(5) = { - 5; - 1; 1; 5 }
Với x - 2 = - 5 thì x = - 3 (TM)
Với x - 2 = - 1 thì x = 1 (TM)
Với x - 2 = 1 thì x = 3 (TM)
Với x - 2 = 5 thì x = 7 (TM)
Vậy x = { - 3; 1; 3; 7 } thì A thuộc Z
\(A=\frac{x+3}{x-2}=\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
A nguyên<=>\(\frac{5}{x-2}\) nguyên<=>5 chia hết cho x-2<=>x-2 thuộc Ư(5)={-5;-1;1;5}<=>x thuộc {-3;1;3;7}
A nguyên khi x thuộc {-3;1;3;7}