LL

tìm x thuộc N để giá trị biểu thức x^2+3x+1 là số chính

 phương

 

DH
18 tháng 10 2017 lúc 19:56

Do \(x^2+3x+1\) là số chính phương nên \(x^2+3x+1=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4x^2+12x+4=4a^2\)

\(\Leftrightarrow\left[\left(2x\right)^2+2.2x.3+3^2\right]-4a^2-5=0\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2a\right)^2=5\)

\(\Leftrightarrow\left(2x-2a+3\right)\left(2x+2a+3\right)=5\)

Do x;a nguyên nên \(2x-2a+3\) và \(2x+2a+3\) là ước của 5

\(Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)

Với \(2x-2a+3=1\) thì \(2x+2a+3=5\) => \(\left(a;x\right)=\left(1;0\right)\) (TM)

Với \(2x-2a+3=5\) thì \(2x+2a+3=1\) => \(\left(a;x\right)=\left(-1;0\right)\) (TM)

Với \(2x-2a+3=-1\) thì \(2x+2a+3=-5\) => \(\left(a;x\right)=\left(-1;-3\right)\) (loại)

Với \(2x-2a+3=-5\) thì \(2x+2a+3=-1\) => \(\left(a;x\right)=\left(-3;-1\right)\) (loại)

Vậy \(x=0\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
ML
Xem chi tiết
DN
Xem chi tiết
PN
Xem chi tiết
CN
Xem chi tiết
PV
Xem chi tiết
DB
Xem chi tiết