NA

Tìm x thỏa mãn điều kiện 

a) \(\sqrt{\frac{2x-3}{x-1}}\) =2

b) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}\) =2

c) \(\sqrt{\frac{4x+3}{x+1}}\) =3

d) \(\frac{\sqrt{4x+3}}{\sqrt{x+1}}\) =3

NA
2 tháng 10 2016 lúc 18:20

a)\(\sqrt{\frac{2x-3}{x-1}}=2\RightarrowĐk:\frac{2x-3}{x-1}\ge0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{3}{2}\\x< 1\end{array}\right.\)

\(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\)

\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-3=4x-4\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)(nhận)

b)\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\RightarrowĐk:\begin{cases}2x-3\ge0\\x-1>0\end{cases}\)

\(\Leftrightarrow x\ge\frac{3}{2}\)

\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\)

\(\Leftrightarrow2x-3=4x-4\)\(\Leftrightarrow x=\frac{1}{2}\)(loại)

c)\(\sqrt{\frac{4x+3}{x+1}}=3\RightarrowĐk:\frac{4x+3}{x+1}\ge0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge\frac{-3}{4}\\x< -1\end{array}\right.\)

\(\sqrt{\frac{4x+3}{x+1}}=3\Rightarrow\frac{4x+3}{x+1}=9\)

\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)

\(\Leftrightarrow5x=-6\Leftrightarrow x=\frac{-6}{5}\)(nhận)

c)\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\RightarrowĐk:\begin{cases}4x+3\ge0\\x+1>0\end{cases}\)

\(\Rightarrow x\ge\frac{-3}{4}\)

\(\frac{\sqrt{4x+3}}{\sqrt{x+1}}=3\Rightarrow\sqrt{4x+3}=3\sqrt{x+1}\)

\(\Leftrightarrow4x+3=9\left(x+1\right)\Leftrightarrow4x+3=9x+9\)

\(\Leftrightarrow x=\frac{-6}{5}\)(loại)

Bình luận (0)

Các câu hỏi tương tự
SN
Xem chi tiết
HX
Xem chi tiết
VT
Xem chi tiết
PA
Xem chi tiết
NO
Xem chi tiết
NH
Xem chi tiết
TB
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết