Đặt \(2x+2=a\)
\(\sqrt[3]{a-1}+\sqrt[3]{a}+\sqrt[3]{a+1}=0\)
+Nếu a = 0 thì VT = 0 =VP
+Nếu a < 0 thì \(VT
Đặt \(2x+2=a\)
\(\sqrt[3]{a-1}+\sqrt[3]{a}+\sqrt[3]{a+1}=0\)
+Nếu a = 0 thì VT = 0 =VP
+Nếu a < 0 thì \(VT
Tìm x để B=3A,biếtA=\(\left(\frac{5+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}+\frac{5-2\sqrt{6}}{\sqrt{3}-\sqrt{2}}\right)\) /\(\left(\frac{1}{2\sqrt{5}+3\sqrt{2}}-\frac{1}{2\sqrt{5}-3\sqrt{2}}\right)\)
B=\(\frac{2x^4-x^3+2x^2+x-4}{2x^3-x^2-2x+1}\)
Giải phương trình vô tỉ :
a) \(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
b) \(\sqrt{2x+4}-2\sqrt{2-x}=\frac{6x-4}{\sqrt{x^2+4}}\)
c) \(\sqrt{3x^2-4x+2}+\sqrt{3x+1}+\sqrt{2x-1}+6x^3-7x^2-3=0\)
d) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
\(\frac{1}{\sqrt{2x}-3}+\frac{4}{\sqrt{y}-2}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
Tìm x,y,z
tìm giá trị của x
a. 2 (3x-1)(2x +5) - 6(2x-1) (x+2) = - 6
b. 3 (2\(\sqrt{x}\)-1 ) (3\(\sqrt{x}\)-1) - (2\(\sqrt{x}\)-3) (9\(\sqrt{x}\)-1) - 3 = - 3
Cho ba số nguyên dương x,y,z thỏa mãn:\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-z}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
Tìm x,y,z
Cho biểu thức \(K=\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{x+2\sqrt{x}-3}\).Rút gọn biểu thức K và tìm các giá trị x để K>0
cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). tìm giá trị nhỏ nhất của Q
Cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). Tìm giá trị nhỏ nhất của Q?
Cho x,y,z là ba số nguyên dương và
Q= \(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}} +\frac{16}{\sqrt{3z-1}} +\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)
Tìm GTNN của Q