Ta có
\(\frac{2x^2+3x+3}{2x+1}=x+1+\frac{2}{2x+1}\)
Để \(Q\in z\Rightarrow2⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)
Vì 2x+1 là số lẻ nên \(2x+1=\pm1\)
\(\orbr{\begin{cases}2x+1=1\\2x+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy....
ta có:
(2x2 + 3x + 3) : (2x + 1) = x + 1 (dư 2)
=> 2x + 1 \(\in\)Ư (2) = \(\left\{\pm1;\pm2\right\}\)
=> 2x + 1 = 1 <=> x = 0
2x + 1 = -1 <=> x = -1
2x + 1 = 2 <=> x = \(\frac{1}{2}\)
2x + 1 = -2 <=> x = \(\frac{-3}{2}\)
Để Q có giá trị nguyên thì:
\(2x^2+3x+3\)\(⋮\) \(2x+1\)
\(2x^2+x+2x+1+2\)\(⋮\) \(2x+1\)
\(x\left(2x+1\right)+2x+1+2\)\(⋮\)\(2x+1\)
Mà \(x\left(2x+1\right)+2x+1\)\(⋮\) \(2x+1\) nên:
\(2\) \(⋮\) \(2x+1\)
\(2x+1\inƯ\left(2\right)=\left\{1,2,-1,-2\right\}\)
Mà\(2x+1⋮̸̸\)\(2\) nên \(2x+1\in\left\{1,-1\right\}\)
\(2x\in\left\{0,-2\right\}\)
\(x\in\left\{0,-1\right\}\)
Vậy để giá trị \(Q\)nguyên thì \(x\in\left\{0,-1\right\}\)