P=\(2x^2+5x\)
=\(2\left(x^2+\frac{5}{2}x\right)\)
=\(2\left(x^2+2x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)\)
= \(2\left(x+\frac{5}{4}\right)^2-\frac{25}{8}\)
de P nhan gia tri duong thi
\(2\left(x+\frac{5}{4}\right)^2>\frac{25}{8}\)
<=> \(\left(x+\frac{5}{4}\right)^2>\frac{25}{16}\)
<=> \(\orbr{\begin{cases}x+\frac{5}{4}>\frac{5}{4}\\x+\frac{5}{4}< \frac{-5}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x< \frac{-5}{2}\end{cases}}}\)
vay voi x>0 hoac x< -5/2 thi P dat gia tri duong
Chuc ban hoc tot